PECAM-1 mediates NO-dependent dilation of arterioles to high temporal gradients of shear stress.
نویسندگان
چکیده
OBJECTIVE In response to changes in wall shear stress (WSS) the vascular endothelium releases several factors, among others nitric oxide. On the basis of studies of endothelial cells in culture, suggesting that platelet endothelial cell adhesion molecule-1 (PECAM-1) is specifically involved in sensing and coupling high temporal gradients of fluid shear stress with activation of eNOS, we hypothesized that dilations of isolated skeletal muscle arterioles from PECAM-1 knockout mice (PECAM-KO) will be reduced to rapid increases in WSS elicited by increases in perfusate flow. METHODS AND RESULTS Small and large step increases in flow resulted in substantial dilations in arterioles of WT mice (45+/-4%), but they were markedly reduced in arterioles of PECAM-KO mice (22+/-5%). The initial slope of dilations, when WSS increased rapidly, was greater in vessels of WT than those of PECAM-KO mice (slopes: 0.378 and 0.094, respectively), whereas the second phase of dilations, when flow/shear stress was steady, was similar in the 2 groups (slopes: 0.085 and 0.094, respectively). Inhibition of eNOS significantly reduced the initial phase of dilations in arterioles from WT, but not from those of PECAM-KO mice. The calcium ionophore A23187 elicited similar NO-mediated dilation in both WT and PECAM-KO mice. CONCLUSIONS In isolated arterioles of PECAM-KO mice activation of eNOS and consequent dilation by agonists is maintained, but the dilation to high temporal gradients of wall shear stress elicited by increases in perfusate flow is reduced. Thus, we propose that PECAM-1 plays an important role in the ability of the endothelium to sense and couple high temporal gradients of wall shear stress to NO-mediated arteriolar dilation during sudden changes in blood flow in vivo.
منابع مشابه
Reduced NO-dependent arteriolar dilation during the development of cardiomyopathy.
Our previous studies have suggested that there is reduced nitric oxide (NO) production in canine coronary blood vessels after the development of pacing-induced heart failure. The goal of these studies was to determine whether flow-induced NO-mediated dilation is altered in coronary arterioles during the development of heart failure. Subepicardial coronary arterioles (basal diameter 80 microm) w...
متن کاملComparison of the Graft Angles Effects on the Temporal Wall Shear Stress Gradients in the Aorto-Coronary and Coronary-Coronary Bypasses
In this theoretical study, the effect of various types of bypass graft angles on the flow field, has been investigated specially on the temporal Wall Shear Stress (WSS) on the toe, heel and some locations on the bed of the Left Anterior Descending (LAD) artery at the anastomoses areas in the Aorto-Coronary (AC) and Coronary-Coronary (CC) bypasses. Flow fields in both bypasses with angles of...
متن کاملDevelopment of nitric oxide and prostaglandin mediation of shear stress-induced arteriolar dilation with aging and hypertension.
We hypothesized that during hypertension, the impairment of mediation of shear stress-induced dilation by nitric oxide (NO) is due to the prevailing hemodynamic forces, and that mediation of this response by NO should still be present in young spontaneously hypertensive rats (SHR). Thus, responses to increases in perfusate flow eliciting increases in wall shear stress were investigated in press...
متن کاملShear stress-induced release of prostaglandin H(2) in arterioles of hypertensive rats.
The nitric oxide-mediated portion of shear stress-induced dilation of rat gracilis muscle arterioles was shown to be impaired in spontaneously hypertensive rats (SHR). Because shear stress-induced dilation is primarily mediated by endothelium-derived prostaglandins in rat cremasteric arterioles, we hypothesized that in the cremasteric vascular bed the mediation of shear stress-induced dilation ...
متن کاملGender difference in flow-induced dilation and regulation of shear stress: role of estrogen and nitric oxide.
Previous studies show that agonist-induced, nitric oxide (NO)-mediated arteriolar dilations are greater in female than in male rats. Thus we hypothesized that flow-dependent arteriolar dilation, which is in part mediated by NO, is also greater in females than in males. Gracilis muscle arterioles from 12-wk-old female and male Wistar rats were isolated, cannulated, and pressurized. At 80 mmHg of...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Arteriosclerosis, thrombosis, and vascular biology
دوره 25 8 شماره
صفحات -
تاریخ انتشار 2005